RODCHENKO:
:nació en San Petersburgo, su familia se mudó a Kazan en 1902 y estudió en la Escuela de Arte de Kazán, donde impartían clase Nikolái Vesnín y Georgi Medvédev, y en el Instituto Stróganov en Moscú. Él hizo sus primeros dibujos abstractos, influido por el Suprematismo de Kasimir Malevich, en 1915. Al siguiente año, participó en "The Store", exhibición organizada por Vladímir Tatlin, quien ejerció una gran influencia en su desarrollo como aEn el campo de la fotografía Ródchenko fue también célebre.
Como la cámara permitía tomar fotos en cualquier posición, dedujo que la fotografía correspondía a la actividad del ojo humano. De esta forma usó la cámara fotográfica para crear sensaciones desconcertantes, a la vez que usaba las fotografías con un objetivo de compromiso social. Formalmente, las fotografías solían ser o planos cenitales o planos nadir, planos opuestos totalmente al Pictorialismo y que impactaban al espectador, causándole dificultades en reconocer el objeto fotografiado.
Fue así como Ródchenko se propuso liberar a la fotografía de todas las convenciones y puntos de vista comunes en la época, lo que le convirtió en uno de los más importantes pioneros del constructivismo fotográfico.
SIMETRIA:
La simetría es un rasgo característico de formas geométricas, sistema, ecuaciones, y otros objetos materiales o entidades abstractas.
La simetría es:La cualidad, característica que tiene un cuerpo con alguna proporcionalidad de REFERENCIA ESPACIAL
En condiciones formales, decimos que un objeto es simétrico en lo que concierne a una operación matemática dada, si, cuando aplicado al objeto, esta operación no cambia el objeto o su aspecto. Dos objetos son simétricos uno al otro en lo que concierne a un grupo dado de operaciones si uno es obtenido de otro por algunas operaciones (y viceversa). En la geometría 2D las clases principales de simetría de interés son las que conciernen a las isometrías de un espacio euclídeo: traslaciones, rotaciones, reflexiones y reflexiones que se deslizan.
Aquí se encuentra el mejor arte geométrico realizado por los árabes. Solo podían realizar mosaicos con figuras geométricas sin representar ningún objeto en concreto, porque el Corán no permitía ni permite realizar arte con objetos. Incorporaron la geometría dinámica para hacer figuras similares para realizar mosaicos. Hacían figuras que les iban quitando trozos y éstos los trasladaban a otro lado de las figuras.
PAJARITA NAZARI
Es, tal vez, el más conocido de los polígonos nazaríes, curiosamente esta forma está delimitada al igual que el pétalo, por arcos de circunferencia en vez de por segmentos rectos como un polígono convencional.
No nos ha llegado información de cómo los maestros nazaríes trazaban este polígono, pero los matemáticos han encontrado varias formas de construirlo, una de ellas es a partir de un triángulo equilátero, en el que se recortan en cada lado un segmento circular para colocarlo en el mismo lado mediante un giro de 180º.
Se pueden ver mosaicos generados por pajaritas multicolores en la Alhambra y en el Alcázar de Sevilla alternando el blanco y negro
EL HUESO NAZARÍ:
El hueso nazarí es un polígono cóncavo de doce lados, se obtiene a partir de un cuadrado en el que se recortan dos trapecios de dos lados opuestos y se colocan mediante giros en los otros dos lados también opuestos. Como en todos los polígonos nazaríes se conserva el área del polígono inicial.
TESELACIO Y MOSAICOS
Una teselación es una regularidad o patrón de figuras que cubre o pavimenta completamente una superficie plana que cumple con dos requisitos:
que no queden huecos
que no se superpongan o traslapen las figuras.
Las teselaciones se crean usando transformaciones isométricas sobre una figura inicial.
Distintas culturas en el tiempo han utilizado esta técnica para formar pavimentos o muros de mosaicos en catedrales y palacios.
Una pieza es teselante cuando es posible acoplarla entre sí con otras idénticas a ella sin huecos ni fisuras hasta recubrir por completo el plano. La configuración que en tal caso se obtiene recibe el nombre de mosaico o teselación.
Las teselaciones han sido utilizadas en todo el mundo desde los tiempo más antiguos para recubrir suelos y paredes, e igualmente como motivos decorativos de muebles, alfombras, tapices, etc... El artista holandés M.C. Escher se divirtió teselando el plano con figuras de distintas formas, que recuerdan pájaros, peces, animales....
GRUPOS DE SIMETRIA:
Un conjunto A de puntos del plano se dice que es invariante por un movimiento t cuando t(A)=A , es decir, cuando al transformar todos los puntos del conjunto A obtenemos el mismo conjunto A.
Por ejemplo, el triángulo equilátero ABC de la figura inferior permanece invariante por las simetrías axiales que tienen por eje a sus mediatrices AG, BG y CG. Además permanece invariante por los giros de centro G y ángulos 120º y 240º. También permanece invariante por el movimiento identidad i, por el cual todo punto P del plano se transforma en si mismo i(P)=P. Este movimiento se podría identificar con un giro de centro G y ángulo 0º o 360º.
Maurits Cornelis Escher:
Maurits Cornelis Escher, más conocido como M. C. Escher, artista holandés, conocido por sus grabados en madera, xilografías y litografías que tratan sobre figuras imposibles, teselaciones y mundos imaginarios.
Su obra experimenta con diversos métodos de representar (en dibujos de 2 ó 3 dimensiones) espacios paradójicos que desafían a los modos habituales de representación.
La obra de Maurits Cornelis Escher ha interesado a muchos matemáticos.
MOSAICOS Y TESELACIONES:
Una pieza es teselante cuando es posible acoplarla entre sí con otras idénticas a ella sin huecos ni fisuras hasta recubrir por completo el plano. La configuración que en tal caso se obtiene recibe el nombre de mosaico o teselación.
Las teselaciones han sido utilizadas en todo el mundo desde los tiempo más antiguos para recubrir suelos y paredes, e igualmente como motivos decorativos de muebles, alfombras, tapices, etc... El artista holandés M.C. Escher se divirtió teselando el plano con figuras de distintas formas, que recuerdan pájaros, peces, animales....
Como es fácil de imaginar, la diversidad de las formas de las piezas teselantes es infinita. Los matemáticos y en particular los geómetras se han interesado especialmente por las teselaciones poligonales; incluso las más sencillas de estas plantean problemas colosales.
Cuando todos los polígonos de la teselación son regulares e iguales entre sí, se dice que la teselación es regular.
Ahora bien, sólo existen tres teselaciones o mosaicos regulares: la malla de triángulos equiláteros, el reticulado cuadrado como el del tablero de ajedrez y la configuración hexagonal, como la de los paneles.
SIMETRÍA:
La simetría es un rasgo característico de formas geométricas, sistema, ecuaciones, y otros objetos materiales o entidades abstractas.
La simetría es: La cualidad, característica que tiene un cuerpo con alguna proporcionalidad de REFERENCIA ESPACIAL
En condiciones formales, decimos que un objeto es simétrico en lo que concierne a una operación matemática dada, si, cuando aplicado al objeto, esta operación no cambia el objeto o su aspecto. Dos objetos son simétricos uno al otro en lo que concierne a un grupo dado de operaciones si uno es obtenido de otro por algunas operaciones (y viceversa). En la geometría 2D las clases principales de simetría de interés son las que conciernen a las isometrías de un espacio euclídeo: traslaciones, rotaciones, reflexiones y reflexiones que se deslizan.La simetría también puede ser encontrado en organismos vivos.
Maurits Cornelis Escher:
Maurits Cornelis Escher, más conocido como M. C. Escher, artista holandés, conocido por sus grabados en madera, xilografías y litografías que tratan sobre figuras imposibles, teselaciones y mundos imaginarios.
Su obra experimenta con diversos métodos de representar (en dibujos de 2 ó 3 dimensiones) espacios paradójicos que desafían a los modos habituales de representación.
La obra de Maurits Cornelis Escher ha interesado a muchos matemáticos.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario